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for the widest cases and much less for most cases. Its
occurrence and sense are such that it does not cause an
excess over the error tolerance stated for (12), (13) in
comparison therewith.

The usefulness of numerical integration decreases with
greater width because u; and u, approach the pole at
u=1. This is found to decrease the rate of convergence
with smaller intervals.
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Abstract—The singular-integral-equation technique is used to derive
the capacitance and, hence, characteristic impedance of a r ar
coaxial line with a zero-thickness inner conductor. The position of the
inner conducter is arbitrary, but its orientation is assumed to be parallel to
the top and bottom walls of the outer conductor. Simple yet very accurate
formulas for the capacitance and characteristic impedance are found in
terms of complete elliptic integrals.
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I. INTRODUCTION

HE CROSS SECTION of the rectangular transmis-

sion line analyzed in this paper is shown in Fig. 1.
The zero-thickness inner conductor is arbitrarily situated
but is parallel to the x axis. Both conductors are perfectly
conducting, and the medium between the two conductors
is a homogeneous dielectric.

This type of transmission line has found use in some
EMI measurement systems [1] as a transducer for cou-
pling EM energy from the equipment under test (EUT)
into the TEM mode of the transmission line. The EUT is
usually located between the inner and outer conductors

0018-9480/78 /1100-0876$00.75 ©1978 IEEE
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Cross section of a rectangular coaxial line with an offset inner
conductor.

Fig. 1.

but is isolated from them. In many cases the inner con-
ductor is offset vertically in order to accommodate larger
EUT’s. The characteristic impedance of the transmission
line becomes an important design consideration in order
to maximize either the transmitted or received power in
susceptibility or radiated emission tests, respectively.
Since the transmission line usually connects through a
tapered section to an ordinary 50-Q coaxial line, the
nominal characteristic impedance must be chosen to be
approximately 50 €.

In the past a significant amount of work has been done
in analyzing the transmission-line properties of various
rectangular coaxial waveguiding structures. The solutions
obtained are generally for two classes of rectangular lines,
those for which the thickness of the inner conductor is
assumed to be either zero or nonzero. Cohn [2], Tippet
and Chang [3], and Hachemeister [4] have studied the
zero-thickness case, while Anderson [5] and Riblet [6]
have obtained results for inner conductors of finite thick-
ness. Chen [7] has summarized results for both cases. In
most of these analyses, the inner conductor was assumed
to be symmetrically located within the outer conductor.
Hachemeister, however, has obtained results for the hori-
zontally offset zero-thickness inner conductor, while
Chen has obtained results for the horizontally and verti-
cally offset inner conductor of finite thickness. Chen’s
result, however, is not applicable in the limiting case when
the thickness of the inner conductor reduces to zero. It is
the purpose of this paper to investigate the dependence of
the characteristic impedance on the various dimensions of
the rectangular line. In particular, we will obtain results
for a vertically offset inner conductor which has received
little attention in the literature. The formulation, however,
is also applicable for horizontal offsets.

This problem is formulated using an integral-
equation—Green’s-function type of formulation. The
kernel of the resulting integral equation is split into its
singular and nonsingular parts. The nonsingular part is
then expanded in terms of Chebyshev polynomials (as
suggested in [8]), and the integral equation is inverted
using the singular-integral-equation technique [9]. The
solution is found in terms of complete elliptic integrals. As
will become obvious, this formulation has the advantage
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of handling the edge condition exactly and eliminates the
problems encountered in any numerical solution
associated with the discontinuities of the fields near the
sharp edges of the inner conductor.

The retention of only a finite number of terms in the
expansion for the nonsingular part of the kernel results in
an explicit formula for the capacitance. It can be shown,
however, that the higher order terms decay as e "¢~ /¢
where m is the summation index. Thus keeping only one
term can actually provide a surprisingly accurate result for
a wide range of practical geometries (error <0.5 percent
for b/a>05, h=0, w,/w,=1). For very large b/a the
solution reduces to an exact one which can be obtained
using the method of conformal transformation. For finite
b/a, the effect of the images of the inner conductor about
the top and bottom walls of the outer conductor becornes
significant. Our approximation can be thought of as
taking into account one or more of these image terms. As
long as b/ a is not too small, the effect of only a few of the
image terms is felt.

II. FORMULATION

Using Green’s theorem, we know that Poisson’s equa-
tion can be converted into an integral equation for the
unknown charge density on the inner conductor as
follows:

—W2<X‘<W1 (1)

fm _~p(:€) G(x,x)dx'=V,

—wy

where p(x’) is the charge density, e is the dielectric permit-
tivity, and ¥ is the voltage between the inner and outer
conductors. G(x,x’) represents the Green’s function of a
rectangular region of cross section 2aX2b for both ob-
servation and source points X and X, respectively, located
on the inner conductor, and is given as

Yun( X)n(X')
KZ

mn

G(x,x")= D

m, i

)
where

N
‘Pmn(x)_ m

sin[%(x+a)}(sin{%(h+b)]

and
K,,= [(—';1)2+(-"—"—)2}1/2.
a 2b

The Green’s function given in (2) can be written as a
sum of two terms, one of which is logarithmically singular
for X=X and one of which is nonsingular. By extracting
the singular part we can convert (1) into a standard form
of the singular integral equation which can then be in-
verted exactly. We can identify the singular part of the
Green’s function by first noting that we can perform the
summation on “n” in (2) exactly. In the remaining
summation we replace the coefficients in front of the

trigonometric functions by their asymptotic form for large
“m.” This sum represents the singular part of the Green’s
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function and is given as

sinmfsinmé _ 1 1—cos(8+¢)

[oe]
- — 3
O m2=1 mar 47rln 1—-cos(6—¢) 3
where
="
0: 24 (x+a)
and
_ T
$=7_ (x'+a).

The remaining correction series is nonsingular and is
given as

& A, sinmfdsinme

Gn - mz=l ma (4)
where
cosh(—maib) —cosh(ﬂgﬁ)
A,= -1 (5)
sinh (—me )

If we now transform (1) into an equation in terms of 8
and ¢ and differentiate with respect to §, we obtain

P [“H($)[3%G.+3G, |do=0 ©)
L3

where
T
b= % (a—w,)
b, = % (a + Wl)

f®)=p(x")
and P denotes that the integral is to be interpreted in the
principal value sense. 9,G, and 9,G, from (3) and (4) are
given as

1 sin¢
%G, = 27 (cos —cos¢)
and
9,G, = ;lr— >, A,,cosmfsinme (7
m=1

so that (6) can be written as follows:

1 Jre: flop)sing _ (%
2, o —aoeg = | 936,

(cosf—cos¢) ()

If we now invoke Schwinger’s transformation [10]:

cosf=a— Bo
and

coso=a— Bu
with « and B given by

1

a=5 [cos¢1+cos¢2]
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and

1
B= 0 [cosp,—cos¢, ]

we can transform (8) into the canonical form of the
singular integral equation:

T,[F(u)]=H(v) )

where

T, F(u)] = -:;P[_llf(Tut))du
with

F(u)=f(¢)

and

H(v)= =2 [ “f(6)3,G,ds. (10)

31
ITI. Sorurtion

Following the rationale given in [8], it is convenient to
expand H(v) given in (10) in terms of Chebyshev poly-
nomials of the second kind U, as follows:

H(v)= 20 Cr1Un(v) (11)
where the C,’s are coefficients to be determined. The
inversion of (9) is exactly given as [9, p. 201]

s (o T [1-0]2H () ]} (12)

[1-¢%]

with C, to be determined, so that upon inserting (11) into
(12) and using the following identity [11]:

F(v)=

L[ [1-]"20, ) | = = T,y (v)

where T, is the Chebyshev polynomial of the first kind,
one obtains for F(v) the following:
(13)

Flo)= [1-02]"72 m2=o CnTno)

Equation (13) is an expression for the charge density on
the inner conductor. This quantity must be integrated
over the strip to obtain the total charge and thus the
capacitance. From its definition, the total charge @ and
the capacitance are related as follows:

0=cv= [ p(x)ax'=21 [ *fig)as

(14)

Thus, inserting (13) into (14) and expressing sin¢ in terms
of u, one obtains the following:

2a &
C=v 2

m=0

=28 1 IW

_1 sing

C,I, (15)
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where

T, (u)du '
_l[(lza—u)(l—u)(u+l)( I;a)]m
(16)

As shown in Appendix A, ,, can be calculated in terms
of complete elliptic integrals [12] of the following mod-
ulus:

___ VB
[(1+8)'—a?]

To complete the solution it remains to calculate the
constants C,, in (15). This is done by substituting the
expressions for H and F given, respectively, in (11) and
(13) into the defining equation (10) and the initial undif-
ferentiated integral equation (1). The equations that result
are derived in Appendix B and are given as follows:

(17)

n C cos(ﬂ)
e 2 2meV
+2 -4 =
g nEO kZO kA b (n+1) afs
(18)
and
ww m—1 Ck
Cos1t 8 2 2 (1_8m0)AmqnmA_pk,m—l=0’
m=n k=0 k

n=0,1,2,- (19)
where 8, is the Kronecker delta, A, is the Neumann
factor, and p,, and g, as defined in Appendix B are,
respectively, the expansion coefficients of sin(n+1)
¢/sing and cosng in terms of Chebyshev polynomials
T, (u) and U, (u) with u=(a—cose)/f. 4, is the expan-
sion coefficient of the nonsingular G, given in (5), and J,
is a cancnical integral defined as

T a—cos<1>)l l
f > ( B !
#1 [(cos¢, —cos¢)(cosp—cosg,) |

As shown in Appendix A, this integral also can be
calculated in terms of the complete elliptic integrals, how-
ever, of the modulus complementary to k defined as

(1-py—a?]”
(+B)Y-a*|

In order to solve for the constants C,,, we must invert
the infinite set of equations given in (18) and (19). By
examining (5) we see that for large m, A, is given ap-
proximately by

1+sing
1 —sin¢

7 do.

=

k=[1-k*]"/?= (1)

Am~ _ e~m7r(b—h)/a'

This exponential convergence allows us to truncate the
infinite matrix to one of very small order. The order of the
resulting matrix depends of course on the magnitude of
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(b—Hh)/a.If (b—h)/a is very large, then clearly all of the
A,’s are identically zero, and the capacitance is given as

_ 2a 4el, el K(k) ’
COI0 A K(K) (22)

where k was defined in (17). Furthermore, if the center
conductor is symmetrically located left and right, then
a=0 and (22) can be further simplified by applying
Gauss’ transformation [13]

=2e

2VF_ =(1+ B)K(B)
so that (22) reduces to
K(B) :
“K(B) &

Equations (22) and (23) are the exact solutions for the
limiting case of b/a—o0[4] for nonzero and zero offset,
respectively.

We can now obtain first-order corrections by assuming
that only A, in (18) and (19) is significant, i.e., we let
A,, =0 for m>1. The infinite set of equations then re-
duces to just three equations in three unknowns which can
be solved to give

I,—2apA, 1, + B?4,1,
—2aBA S+ B4, J,+44, |

_ de
B

The canonical integrals I, and J, are evaluated in
Appendix A. Inserting these results into the above equa-
tion we then obtain

sz{ [1+(1-a?)4,]K-4,[(1+B)—a?]E ]
|\ [1=BQ+B)4, 1K +4,[(1+BY—2]E" |’
modk. (24)

It is interesting to note that while the integrals I,, I,, J,,
and J, by themselves all are functions of the elliptic
integral of the third kind TI, the final result for ihe
capacitance does not contain the Il function. This is an
advantage in the numerical evaluation of (24) as both K
and F can be computed accurately and efficiently using
an algorithm known as the arithmetical-geometric mean
(AGM) [14].

1V. NUMERICAL RESULTS

In order to check the accuracy of (24), we will assume
that the inner conductor is symmetrically located both left
and right, i.e., a=0, and up and down, i.e., #=0. Equa-
tion (24) can then be reduced to the following form using
Gauss’ transformations [13]:

K[1+4,2~-B%)]-24,E
=4e
K'(1—B24,)+24,F’

}, modB (25)
where

b
Al—tanh(ﬁ)Al
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.04 — — ~ - APPROX FOR LARGE

b/a ]
~~~~~~~~~ APPROX FOR SMALL b/a

.02 ~

.01 L 1

Fig. 2. Comparison of characteristic impedance formulas for a rectan-
gular coaxial line with a symmetrically located inner conductor.

and
W =W,=w.

We can now compare this solution to an exact solution
for finite b/a which is found using conformal transforma-
tion methods (see, e.g., [3]) as

K
C. =2e~1€% (26)
where
| _nﬁ)
cn §
=& K(r)
g=a—w
K(1) _2a
K(7) b

7=V1-r?
and sn and cn are Jacobian elliptic functions of modulus
T.

In the following curves we will plot the characteristic
impedance as a function of various parameters. The char-
acteristic impedance Z, is of course obtained from the
capacitance as

1
Zo/71=‘C—/—6

where 7 is the intrinsic impedance defined as

n=[n/€]'”?

and € and p are, respectively, the dielectric permittivity
and magnetic permeability of the material separating the
inner and outer conductors.
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h/b =0

.02 —

o1 N IO R VO RS N R B

w/a

Fig. 3. Design curves for the characteristic impedance based on (25)
for a rectangular coaxial line with a symmetrically located inner
conductor.

OH(XD'O

Zo/n

b/a

1 I 1 1 1
.J0 .20 .30 .40 .50 60 .70 .80 .90 1.00

.01 | | | i
0
w/a

Fig. 4. Design curves for the characteristic impedance based on (25)
for a rectangular coaxial line with a vertically offset inner conductor.

Plotted in Fig. 2 are the exact characteristic impedance
based on (26), the approximate formula based on (25),
and an often used approximation given as [7]

zo/n=ﬂl;-+%1n(1+coth%)} @27
In this graph the abscissa is the aspect ratio of the guide
b/a, and the three sets of curves correspond to w/a=0.1,
0.4, and 0.7. Obviously, the approximate solution given in
(25) is good for b/az=0.35 while (27) is good for b/a=<S
0.35. Together the two expressions provide a very accurate
result for zero-offset rectangular coaxial lines of arbitrary
dimensions.
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Plotted in Figs. 3 and 4 are design curves for the
characteristic impedance based on (24) but for an arbi-
trary vertical offset, i.e., with 4, given by (5). Fig. 3 is for
zero offset while Fig. 4 is for an offset ratio 2/b of 0.5.
The abscissa in these curves is the normalized width of the
inner conductor, and the parameter is the aspect ratio of
the guide. A computer program for generating curves
corresponding to other combinations of offset ratios and
aspect ratios can be found in [15]. We note that these
curves are quite rapidly varying in the narrow strip (w/a
< 1) and small gap (g/a<) regions. Approximate solu-
tions valid in these regions can be obtained by replacing
the elliptic integrals in (24) by their asymptotic forms for
modulus either near zero or one. One would then find the
familiar logarithmic dependence characteristic of such
solutions. These solutions are not only useful, however, in
the limiting regions but may also be extended outside of
this range as is done, for example, by Wheeler [16].

V. CONCLUSIONS

We have presented in this paper a technique for obtain-
ing the capacitance and/or characteristic impedance of a
rectangular coaxial line with offset inner conductor. A
zero-order solution given in (22) and a first-order solution
given in (24) have been obtained; however, the method
can be extended to higher orders if one is willing to invert
larger matrices. For most practical geometries this is not
necessary, as indicated by the accuracy of the approxima-
tion in Fig. 2 for b/a=0.35. The design curves given in
Figs. 3 and 4 enable one to choose appropriate dimen-
sions for the rectangular line to obtain a required char-
acteristic impedance.

APPENDIX A
EVALUATION OF THE CANONICAL INTEGRALS

We begin with the integral I, defined in (16) as

ImE[I T, (u)du .
o [( lza —u)(l—u)(u+l)(u+ 1;0‘)}1/2

This integral can be represented as a linear combination
of integrals defined by replacing 7,,(«) by u™. The evalua-
tion of these integrals with ¥™ in the numerator can be
found in [12, p. 113, (254.10)] as

fl u™du

[(—l% _“)(1”“)(u+1)(u+ 1 Ba”l/z
=(-D"V B kz,

(A1)
where

1
[(1+87)-a]”

) s

and

881

with V,, given recursively as
2Am+2) (1= )K=y V45
=(2m+3)(y*—2v*k*—2y2+ 3K}V,
+2(m+ 1) (yk*+ vy =3k2)V, +1+(2m+1)k V.,
where
a__ 2B
l+,8 o
Vo=K(k)
=II(v* k)
2y = 1) (k2= vV, =(2v%2+2vy*— y*-3k?)
TI(y%, k) + YE(k) +(k? - ) K(k)

Y=

and K, E, and II are complete elliptic integrals of the first,
second, and third kinds, respectively.

If the inner conductor is symmetrically located, i.e.,
a =0, then (Al) simplifies to the following form:

of':

The integral A,
(310.05)] as

u"du
(1—u)(1-B%?) ]

is evaluated recursively in [12, p.

=p4,. (A2
191,

Ay =0
and
(2m+1)pA,,,,,=2m(1+ B A, +(1-2m)A4,,, »

where

4,=2K(B)
and
Ay= 52 [K(B) E(B)].
The remaining canonical integral J,, is defined in (20)
as
a—Ccos¢ 1+sing
4 ( B )1 { 1—sin¢

S

kL

This integral can be evaluated using the method given in
[9, pp. 188-192]. In fact, the integral I, defined in [9,
(6.98)] is related to J, by replacing 7, ((a—cos¢)/B) by
cosm¢. We can thus represent J,, as a linear combination
of the I’s. Using [9, (6.109)] and [9, (6.117)] we find that

[ (cosp, —cos¢)(cosp—cosey) |/

2
Jo= TR K(k,) (A3)
and
2 2
B —2aJ1=E[ 2+2] 1 E(kl)]

(A4)
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2 w2 1172 a—coso 1+sin¢
k1=[al_§2 } zlf T( B )1 ‘1—811’1(15
T, [ (cos ¢, — cos¢)(cosp— cos,) ]'/*

and @ and B are related to « and B as follows:
As shown in Appendix A, J,, can be evaluated in terms

ap=—« of complete elliptic integrals. The nonsingular part of (B1)
and is evaluated by transforming the integration into an equa-
B+ Fi=1+a— B2, &> tion in terms of u and again setting §=7/2 to obtain
. . , 2 2 1 F(u)G,
It can be shown that the modulus &k’ defined in (21) and k] a f & f(#) G, do= 248 (1 ) 2 du
the modulus complementary to k, defined as o € me Jo1 sng

ki=[1-k2]"? CmA,,HCOS(ﬂ)

2GB co co 2
| e “MB 53 :
satisfy the following relation: € m=0n=0 (n+ 1D
1—kj 1 T, (u)sin(rn+1)¢
k'= - . - du. B2
1+ ki f—l [l—uz]l/zsimp * (B2)

Thus we can use the following Gauss’ transformations

[13] The last integration in (B2) can be evaluated by sub-

stituting the following expansion;

2
K(k))=—— K(Kk' i “
()= 37 KK) LD S i) (B3)
k=0
d
an , and then using the orthogonality relationship for the
E(ky)=(1+k)E(K)— Kk K(k)) Chebyshev polynomials:
to rewrite (A3) and (A4) in terms of the modulus &’ as fl T, (1) T, (1) ™, (B4)
U=
11— 27172 24, “hm
=2V B kK(K) L[1-u7] m
and where A, is the Neumann factor defined as
[, 2V5 , _[1/2 m=0
ph=2a),= 5| ~1+ E(k)—~V B kK(K) ] B, A, { L om0
where k was defined in (17). and §,,, is the Kronecker delta defined as
S, = 1, k =m
APPENDIX B km =10, k¥m’
DERIVATION OF THE MATRIX EQUATION Thus
We begin by writing (1) in terms of # and ¢ as cos ( n7r)
2a (o flo) Bl G 2
w ’ G, do= A ——=L
[ 8 Gl wyav =22 (#1916 16,1 dp=v. E A 7e 2o 2, B A e
G * and (B1) reduces to
(B1) .
Equation (B1) holds for ¢, <8 < ¢,, and, without loss of § CJ +2 § é G 4 COS(?) _ 2melV
generality, we can set # to any convenient value within - nT e k=0p AT (n+ 1) aB

this range in order to make the integrations as simple as o ) ) o
possible. We choose #=x/2. This choice places some The remaining set of equations is found by substituting

restrictions on the amount of offset that is allowed. (7) into (10) and using the following expansion:
Specifically, the inner conductor must contain the guide

center. As shown in [9, p. 178], however, this restriction is cosmf= 2 g U(v)
a temporary one, and the final result obtained will hold k=0
for arbitrary offset. to obtain
Upon substituting for f(¢) from (13) and setting 8= 9y & m
7 /2, one can write the singular part of (Bl) as H(v)= 7 2 2 m R Qim Ui (V) (B5)
2a (42 f($) where
= f¢ "I Gdo Z C,J,

R,= [ “f($) sin ms do. (B6)

where 1
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When (B5) is equated to (11) and coefficients of U,,(v)
are matched, the following equation results:

-2 ©
C‘n+1=7 2= Amqunm> n=0’1727.” . (B7)

R, in (B7) can be evaluated by transforming (B6) into
an equation in terms of u, substituting for F(u) from (13),
and using the expansion given in (B3) and the orthogonal-
ity relationship given in (B4). The resulting expression is
given as

m—1
T C
R, = 2'8(1_6,”0) 2 Akpk,m—l'
k=0 ~k

Thus (B7) reduces to

o m—1 Ck
Cn+l= __B 2 E (l—amO)Aanm_A_pk,m—l’
m=n k=0 k
n=0,1,2,---.
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Abstract—A method for the compensation of the effects due to the
discontinuities that arise when transmission lines of different characteristic
impedance are joined is presented. The proposed method is not based on
calculating the equivalent circuit of the discontinuity but makes use of a
simple taper on the wider line at an impedance step to remove the effects
of the discontinuity.
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I. INTRODUCTION

HE EFFECTS observed when lines of different char-

acteristic impedance are joined to form a step discon-
tinuity are well known, and various authors have pre-
sented equivalent circuits [1], [2]. The parameiers of such
equivalent circuits have to be incorporated into the de-
cign, which can lead to considerable complication. In the
limiting case, the end effect observed in open-circuit stubs
or open-circuit parallel-coupled lines can be regarded as a
step from finite to zero linewidth. In the latter case,
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