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for the widest cases and much less for most cases. Its

occurrence and sense are such that it does not cause an

excess over the error tolerance stated for (12), (13) in

comparison therewith.

The usefulness of numerical integration decreases with

greater width because u, and Uz approach the pole at

u= 1. This is found to decrease the rate of convergence

with smaller intervals.
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Characteristic Impedance of a Rectangular
Coaxial Line with Offset Inner Conductor
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Abstract—The singular-integral-equation technique is used to derive I. INTRODUCTION
the capacitance an@ hencej characteristic impedance of a rcdanguk

coaxial fine with a zero-thickness inner conductor. The position of the T HE CROSS SECTION of the rectangular transmis-
inner conductor is arbitrary, but its orientation is assumed to be paraffel to sion line analyzed in this paper is shown in Fig. 1.
the top aud bottom walks of the outer conductor. Simple yet very accurate The zero-thickness inner conductor is arbitrarily situated
forrmdw for the capacitance aud characteristic impedance me fo~d iII but is parallel to the x axis. Both conductors are perfectly
terms of complete elliptic integrals.

conducting, and the medium between the two conductors
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Fig. 1. Cross section of a rectangular coaxial line with an offset inner
conductor.

but is isolated from them. In many cases the inner con-

ductor is offset vertically in order to accommodate IIarger

EUT’S. The characteristic impedance of the transmission

line becc~mes an important design consideration in order

to maximize either the transmitted or received power in

susceptibility or radiated emission tests, respectively.

Since the transmission line usually connects through a

tapered section to an ordinary 50-fil coaxial line, the

nominal characteristic impedance must be chosen to be

approximately 500.

In the past a significant amount of work has been done

in analyzing the transmission-line properties of various

rectangular coaxial waveguiding structures. The solutions

obtained are generally for two classes of rectangular lines,

those for which the thickness of the inner conductor is

assumed to be either zero or nonzero. Cohn [2], Tippet

and Chang [3], and Hachemeister [4] have studied the

zero-thickness case, while Anderson [5] and Rib[et [6]

have obtained results for inner conductors of finite thick-

ness. Ch en [7] has summarized results for both cases. In

most of these analyses, the inner conductor was assumed

to be symmetrically located within the outer concluctor.

Hachemeister, however, has obtained results for the hori-

zontally offset zero-thickness inner conductor, while

Chen has obtained results for the horizontally and verti-

cally offset inner conductor of finite thickness. Chen’s

result, however, is not applicable in the limiting case when

the thickness of the inner conductor reduces to zero. It is

the purpose of this paper to investigate the dependence of

the characteristic impedance on the various dimensions of

the rectangular line. In particular, we will obtain results

for a vertically offset inner conductor which has received

little attention in the literature. The formulation, however,

is also a~pplicable for horizontal offsets.

This problem is formulated using an integral-

equation-Green’s-function type of formulation. The
kernel of the resulting integral equation is split into its

singular and nonsingular parts. The nonsingular part is

then expanded in terms of Chebyshev polynomials (as

suggested in [8]), and the integral equation is inverted

using the singular-integral-equation technique [9’]. The

solutiorl is found in terms of complete elliptic integrals. As

will become obvious, this formulation has the advantage

of handling the edge condition exactly and eliminates the

problems encountered in any numerical solution

associated with the discontinuities of the fields near the

sharp edges of the inner conductor.

The retention of only a finite number of terms in the

expansion for the nonsingular part of the kernel results in

an explicit formula for the capacitance. It can be shown,

however, that the higher order terms decay as e ‘m”c~ ‘h~fa

where m is the summation index. Thus keeping only cme

term can actually provide a surprisingly accurate result for

a wide range of practical geometries (error <0.5 percent

for b/a >0.5, h =0, wl/wz= 1). For very large b/a the

solution reduces to an exact one which can be obtained

using the method of conformal transformation. For finite

b/a, the effect of the images of the inner conductor about

the top and bottom walls of the outer conductor becomes

significant. Our approximation can be thought of as

taking into account one or more of these image terms. As

long as b/a k not too small, the effect of only a few of the

image terms is felt.

II. FORMULATION

Using Green’s theorem, we know that Poisson’s equa-

tion can be converted into an integral equation for the

unknown charge density on the inner conductor as

follows :

1
WIp(i) qa, ~’)dx’ = v,

if -W2<X’<W, (1)
— W2

where p(x’) is the charge density, c is the dielectric permit-

tivity, and V is the voltage between the inner and outer

conductors. G(x, x’) represents the ~Jreen’S function of a

rectangular region of cross section 2a x 2b for both ob-

servation and source points x and x’, respectively, located

on the inner conductor, and is given as

+mn(w’mn(~’)
6(x,x’) = ~ ~2—

m, n mn

(2)

where

and

K.n=[(%r+(a’]’”
The Green’s function given in (2) can be written M a

sum of two terms, one of which is logarithmically singular

for Z= X’ and one of which is nonsingular. By extracting

the singular part we can convert (1) into a standard form
of the singular integral equation w’hich can then be irn-

verted exactly. We can identify the singular part of the

Green’s function by first noting that we can perform the

summation on “n” in (2) exactly. In the remaining

summation we replace the coefficients in front of the

trigonometric functions by their asymptotic form for large

“m.” This sum represents the singular part of the Green’s
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function and is given as

where

O=; (x+a)

and

~a ( +a).+=? x~

The remaining correction series is nonsingular and is

given as

Gn = ~ ‘“ ‘in::sinm+
m=l

where

(4)

[

A = C+$-)-+%)-, . (,,

m

()

m~b
sinh —

a 1

If we now transform (1) into an equation in terms of O

and + and differentiate with respect to 0, we obtain

JP ~:~(@)[~oG,+~eGn]d@=O (6)

where

f(+) =P(x’)

and P denotes that the integral is to be interpreted in the

principal value sense. a~G, and a. G. from (3) and (4) are

given as

a@G.=~
sin ~

2T (Cose – Cos+)

and

aoG. = ~ ~ A. cos m9 sinm~ (7)
~=1

so that (6) can be written as follows:

If we now invoke Schwinger’s transformation [10]:

cosf3=ff-&

and

Cos+=a–fiu

with a and ~ given by

~=&w’l+w21

and

we can

singular

where

with

and

13=; [cos@, -cos@2]

transform (8) into the canonical form of the

integral equation:

To[ F’(u)]= H(o) (9)

F(u) =f(@)

H(t)) = – 2J@~(@aoGnd@. (lo)
+1

III. SOLUTION

Following the rationale given in [8], it is convenient to

expand H(o) given in (10) in terms of Chebyshev poly-

nomials of the second kind U~ as follows:

H(o) = 5 cm+]um(~) (11)
~=()

where the Cm’s are coefficients to be determined. The

inversion of (9) is exactly given as [9, p. 201]

F(o) = 1
[~-02]V2

{co– To[[l–u2]’/2H(u)]) (12)

with CO to be determined, so that upon inserting (11) into

(12) and using the following identity [1 1]:

To[[l –u2]’/2um(u)] = – Tm+l(o)

where T~ k the Chebyshev polynomial of the first kind,

one obtains for F’(o) the following:

F(v) =
1

~ C~T~(o).
[1-02] 1/2 m=,

(13)

Equation (13) is an expression for the charge density on

the inner conductor. This quantity must be integrated

over the strip to obtain the total charge and thus the
capacitance. From its definition, the total charge Q and

the capacitance are related as follows:

Thus, inserting (13) into (14) and expressing sin+ in terms
of u, one obtains the following:

(15)
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where

1~= ‘1
T~(u) du

?( )

–1 l+a ( ~)llz
—–u (l– U)(U+l) u+

P

(16)

As shown in Appendix A, 1~ can be calculated in terms

of complete elliptic integrals [12] of the following mod-

ulus :

k=
2fi

[(l+p)’-a’]’/2”

To colmplete the solution it remains

constants Cm in (15). This is done by

(17)

to calculate the

substituting the

expressions for H and F given, respectively, in (11) and

(13) into the defining equation (10) and the initial undif-

ferentiated integral equation (l). The equations that result

are derived in Appendix B and are given as follows:

(18)

and

m—1

Cn+l+/3 ~ ~ (1–8~o)A~qn~$p~,n_1 =0,
m=n k=o k

n=0,1,2, ”.” (19)

where 8fl,0 is the Kronecker delta, Ak is the Neumann

factor, and p~n and q~n as defined in Appendix B are,

respectively, the expansion coefficients of sin (n + 1)

@/sin @ and cosmj in terms of Chebyshev polync~mials

T~(u) and tl~(u) with u = (a – cos@)/(1. An k the expan-

sion coefficient of the nonsingular G. given in (5), and Jn

is a cancnical integral defined as

As shown in Appendix A, this integral also can be

calculated in terms of the complete elliptic integrals, how-

ever, of the modulus complementary to k defined as

[ ] ‘IM3’2 ’21)
//=l_k’ 1/2

In order to solve for the constants Cm, we must invert

the infinite set of equations given in (18) and (19). By

examining (5) we see that for large m, Am k given ap-

proximately by

A ~z—e –mn(b – h)/a

This exponential convergence allows us to truncate the

infinite matrix to one of very small order. The order of the

resulting matrix depends of course on the magnitude of

879

(b – h)/a. If (b – #z)/a is very large, then clearly all of the

Am’s are identically zero, and the capacitance is given as

where k was defined in (17). Furthermore, if the center

conductor is symmetrically located left and right, then

a = O and (22) can be further simplified by applying

Gauss’ transformation [13]

[1K 2*
— =(l+p)K(/3)

l+p

so that (22) reduces to

C=4E*. (23)

Equations (22) and (23) are the exact solutions for the

limiting case of b/a~m[4] for nonzero and zero offset,

respectively.

We can now obtain first-order corrections by assuming

that only A ~ in (18) and (19) is significant, i.e., we let

Am= O for m >1. The infinite set of equations then re-

duces to just three equations in three unknowns which can

be solved to give

The canonical integrals In and ~~ are ewduated in

Appendix A. Inserting these results into the above equa-

tion we then obtain

{

[1+(1 -a2)A,]K-A,[(l+ P)2-a2]E

)C=26 [1-B(2+D)A,]K’+ A1[(l+~)2-a2]E’ ‘

mc,dk. (24)

It is interesting to note that while the integrals 11, Iz, J],

and J2 by themselves all are functions of tlhe elliptic

integral of the third kind II, the final result for the

capacitance does not contain the II function. ‘This is an

advantage in the numerical evaluation of (24) as both K

and E can be computed accurately and efficiently using

an algorithm known as the arithmetical-geometric mean

(AGM) [14].

IV. NUMERICAL RESULTS

In order to check the accuracy of (24), we will assume

that the inner conductor is symmetrically located both left

and right, i.e., a = O, and up and down, i.e., h Z=O. Equa-

tion (24) can then be reduced to the following form using

Gauss’ transformations [13]:

{

K[l+A*(2–&)]-2A#
C=4C

K’(l– B2A,)+2A1E’–

where

()
A1=tanh ~ –1

}
> mod~ (25)
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Fig. 2. Comparison of characteristic impedance formulas for a rectan-
gular coaxial line with a symmetrically located inner conductor.

and

WI = W*-w.

We can now compare this solution to an exact solution

for finite b/a which is found using conformal transforma-

tion methods (see, e.g., [3]) as

where

()sn{ 2
X=vm=r’ —

cn 1

g=a–w

K(r) 2a— .—
K(7’) b

(26)

#=~1-72

and sn and cn are Jacobian elliptic functions of modulus

T.

In the following curves we will plot the characteristic

impedance as a function of various parameters. The char-

acteristic impedance 20 is of course obtained from the

capacitance as

where q is the intrinsic impedance defined as

q=[p/y2
and c and p are, respectively, the dielectric permittivity

and magnetic permeability of the material separating the

inner and outer conductors.

hlb = O ~=o

1
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Fig. 3. Design curves for the characteristic impedance based on (25)
for a rectangular coaxial line with a symmetrically located inner

h/b = .5 ~=o
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!// d

Fig. 4. Design curves for the characteristic impedance based on (25)
for a rectangular coaxial line with a vertically offset inner conductor.

Plotted in Fig. 2 are the exact characteristic impedance

based on (26), the approximate formula based on (25),

and an often used approximation given as [7]

In this graph the abscissa is the aspect ratio of the guide

b/a, and the three sets of curves correspond to w/a= 0.1,

0.4, and 0.7. Obviously, the approximate solution given in

(25) is good for b/a~O.35 while (27) is good for b/a~

0.35. Together the two expressions provide a very accurate

result for zero-offset rectangular coaxial lines of arbitrary

dimensions.
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Plotted in Figs. 3 and 4 are design curves fcm the

characteristic impedance based on (24) but for an arbi-

trary vertical offset, i.e., with~l given by(5). Fig. 3 is for

zero offset while Fig. 4 is for an offset ratio h/b of 0.5.

The abscissa in these curves is the normalized width of the

inner conductor, and the parameter is the aspect ratio of

the guide. A computer program for generating curves

corresponding to other combinations of offset ratios and

aspect ratios can be found in [15]. We note that these

curves are quite rapidly varying in the narrow strip (w/a

<<1) and! small gap (g/a<< 1) regions. Approximate solu-

tions valid in these regions can be obtained by replacing

the elliptic integrals in (24) by their asymptotic forms for

modulus either near zero or one. One would then find the

familiar logarithmic dependence characteristic of such

solutions. These solutions are not only useful, however, in

the limiting regions but may also be extended outside of

this range as is done, for example, by Wheeler [16].

V. CONCLUSIONS

We have presented in this paper a technique for c)btain-

ing the capacitance and/or characteristic impedance of a

rectangular coaxial line with offset inner conductor. A

zero-order solution given in (22) and a first-order solution

given in (24) have been obtained; however, the method

can be extended to higher orders if one is willing to invert

larger matrices. For most practical geometries this is not

necessary, as indicated by the accuracy of the approxima-

tion in Fig. 2 for b/a~O.35. The design curves given in

Figs. 3 and 4 enable one to choose appropriate dimen-

sions for the rectangular line to obtain a required. char-

acteristic impedance.

APPENDIX A

IZVALUATION OF THE CANONICAL INTEGRALS

We begin with the integral Z~ defined in (16) as

T~(u)du
1~~ 1

‘[( )

–1 l+a

( w“
—–u (1–u)(u+l) 24+

B

This integral can be represented as a linear combination

of integrals defined by replacing T~(u) by u ~. The evalua-

tion of these integrals with u ~ in the numerator can be

found in [12, p. 113, (254.10)] as

1 U ‘du

‘[( )

–1 l+a

( 7)1”2
—–u (l– U)(U+l) u+

‘P

=(-l)mfi kZ. (M)

where

k=
2v7i

[(1+/3’) -a’]1’2

and

with Vm given recursively as

2(m +2)(1 – y2)(k2– y2) V~+3

= (2m +3)(y4-2y2k2-2y2 +:3k2) V~+2

+2(nz+ l)(y2k2+ y2–3k2) V~+l +(2m+ l)kZV~

where

2P
Y2= l+p–a

V,= K(k)

v, =lI(y2, k)

2(y2– l)(k2– y’) V2=(2y2k2+2y2– y4–3k2)

. II(y2, k) + y2E(k) + (k’ - y2)K(k)

and K, E, and H are complete elliptic integrals of the first,

second, and third kinds, respectively.

If the inner conductor is symmetrically lclcated, i.e.,

a = O, then (A 1) simplifies to the following form:

The integral Zm is evaluated recursively in [ 12, p. 191,

(310.05)] as

X’m+, =o

and

(2nl + l)p’x2m+2=2m(l +B2)X’,. +(1 –z~’)~’m.,,

where

and

The remaining canonical integral Jn k defined

as

in (20)

This integral can be evaluated using the method given in

[9, pp. 188-192]. In fact, the integral 1, defined in [9,

(6.98)] is related to ~ by replacing T’((a - cos@)/~) by

cos m+. We can thus represent J~ as a linear combination

of the Z,’s. Using [9, (6.109)] and [9, (6.117)] we find that

Jo= [1 _;21,/2 ‘(k’)
(A3)

and

/lJ2-2aJ, =~[-2+2[1-F2]112E(k1) ]-@o

(A4)
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and ii and ~ are related to a and /3 as follows:

@= – a

and

&+@2= l+a2–~*, E>$.

It can be shown that the modulus k’ defined in(21) and&

the modulus complementary to k, defined as

k~=[l–k~]l/2

satisfy the following relation:

k,= l–k;

~“

Thus we can use the following Gauss’

[13]

K(kl) = ~ K(k’)
1

and

transformations

E(kl) = (1 + k;)13(k’) – kjK(kl)

to rewrite (A3) and (A4) in terms of the modulus k’ as

~Jo=2@ kK(k’)

and

[
fiJ1-2aJ, =~ –1+

2ti 1~ E(k’) – l@ kK(k’) – /?Jo

where k was defined in (17).

APPENDIX B

DERIVATION OF THE MATRIX EQUATION

We begin by writing (1) in terms of O and @ as

JWI p(x’)
:~q[~ G(x, x’) dx’ = — G,+ G~]d@= V.

—W2

(Bl)

Equation (B 1) holds for +1 <6< @z, and, without loss of

generality, we can set O to any convenient value within

this range in order to make the integrations as simple as

possible. We choose /3= 7r/2. This choice places some
restrictions on the amount of offset that is allowed.

Specifically, the inner conductor must contain the guide

center. As shown in [9, p. 178], however, this restriction is

a temporary one, and the final result obtained will hold

for arbitrary offset.

Upon substituting for j(~) from (13) and setting 8=

m/2, one can write the singular part of (B 1) as

J ‘Kmnlal doJm~~ ‘2

T ‘#I [(COS+, -cos@(cosr#)-cos@2) ]’/’ “

As shown in Appendix A, J~ can be evaluated in terms

of complete elliptic integrals. The nonsingular part of (B 1)

is evaluated by transforming the integration into an equa-

tion in terms of u and again setting 0= 7r/2 to obtain

The last integration in (B2) can be evaluated by sub-

stituting the following expansion:

sin(n + 1)+
= ,$oPknW)sin $

(B3)

and then using the orthogonality relationship for the

Chebyshev polynomials:

where Am is the FJeumann factor defined as

{
Am= ~/2’ ‘=0

1, m>O

and i?kmis the Kronecker delta defined as

{
13km= 1’ k=m.

O, k #m

Thus

and (B 1) reduces to

The remaining set of equations is found by substituting
(7) into (10) and using the following expansion:

cos mO = ~ qk~ Uk(v)
k=O

to obtain

where

where
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When (B5) is equated to (11) and coefficients of .!l~(o)

are matched, the following equation results:

c=1?+1 + &l#?~q.~, n=O, 1,2,..0. (B7)

Rm in (B7) can be evaluated by transforming (B6) into

an equation in terms of u, substituting for F(u) from (13),

and using the expansion given in (B3) and the orthogonal-

ity relationship given in (B4). The resulting expression is

given as

m—1

R.=*(l–/lmo) ~ :Pk,m-l.
k=O k

Thus (B7) reduces to

w m—1 /’

c n+l= -- Pmlzn~ (1 -Qt&+k,m_,,
k=O

n=0,1,2, ”” .
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The Compensation of Step Discontirmities, in
TEM-Mode Transmission Lines

JOHANNES A. G. MALHERBE, SENIOR MEMBER, IEEE, AND ANDRE F. STEYN

,4bstnzc,r-A method for the compensation of the effects due to the
discontinuities that arise wheu transmission fines of dfffereut cfmraeterfstic
impedance are joined is presented. The proposed method is not based on

calculating the eqnfvafent circuit of the discontinuity but makes use of a

simple taper on the wider ~me at an impedance step to remove th(e effects

of the discontinuity.
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I. INTRODUCTION

T HE EFFECTS observed when lines of different c~har-

acteristic impedance are joined to form a step discon-

tinuity are well known, and various authors have pre-

sented equivalent circuits [1], [2]. The parameters of such

equivalent circuits have to be inco~orated into the de-
sign, which can lead to considerable complication. In the

limiting case, the end effect observed in open-circuit stubs

or open-circuit parallel-coupled lines can be regarded as a

step from finite to zero linewidth. In the latter case,

0018-9480/78/ 1100-0883$00.75 @1978 IEEE


